top of page
programming-background-with-person-working-with-codes-computer.jpg

Maskininlärning med Python

Den här kursen ger en fördjupad förståelse för maskininlärning med Python. I den här kursen lär du dig om artificiella datamängder med Scikit-learn, neurala nätverk, att separera klasser med delningslinjer, regressionsträd i Python, slumpmässiga skogar i Python, att förstärka algoritmer i Python och mycket mer. Utbildningen passar både nybörjare och de med avancerad nivå av Python- och maskininlärningskompetens.

  • Intro to Machine Learning with Python

  • Machine Learning with Python

  • Machine Learning Terminology

  • Evaluation Metrics

  • Data Representation and Visualization of Data

  • Available Data Sets in Sklearn

  • Artificial Datasets with Scikit-Learn

  • Train and Test Sets by Splitting Learn and Test Data

  • k-Nearest Neighbor Classifier in Python

  • k-Nearest-Neighbor Classifier with sklearn

  • Neural Networks Introduction

  • Separating Classes with Dividing Lines

  • A Simple Neural Network from Scratch in Python

  • Pereceptron class in sklearn

  • Neural Networks, Structure, Weights and Matrices

  • Running a Neural Network with Python

  • Backpropagation in Neural Networks

  • Training a Neural Network with Python

  • Softmax as Activation Function

  • Confusion Matrix in Machine Learning

  • Training and Testing with MNIST

  • Dropout Neural Networks in Python

  • Neural Networks with Scikit

  • A Neural Network for the Digits Dataset

  • Naive Bayes Classification with Python

  • Naive Bayes Classifier with Scikit

  • Introduction to Text Classification

  • Text Classification in Python

  • Natural Language Processing with Python

  • Natural Language Processing: Classification

  • Introduction to Regression with Python

  • Decision Trees in Python

  • Regression Trees in Python

  • Random Forests in Python

  • Boosting Algorithm in Python

  • Principal Component Analysis (PCA) in Python

  • Linear Discriminant Analysis in Python

  • Expectation Maximization and Gaussian Mixture Models (GMM)

  • Introduction to TensorFlow

bottom of page